Chris Roberts e958c6183a Adds initial HCP config support
Adds initial basic support for HCP based configuration in vagrant-go.
The initalization process has been updated to remove Vagrantfile parsing
from the client, moving it to the runner using init jobs for the basis
and the project (if there is one). Detection is done on the file based
on extension for Ruby based parsing or HCP based parsing.

Current HCP parsing is extremely simple and currently just a base to
build off. Config components will be able to implement an `Init`
function to handle receiving configuration data from a non-native source
file. This will be extended to include a default approach for injecting
defined data in the future.

Some cleanup was done in the state around validations. Some logging
adjustments were applied on the Ruby side for better behavior
consistency.

VirtualBox provider now caches locale detection to prevent multiple
checks every time the driver is initialized.
2023-09-07 17:26:10 -07:00

1749 lines
48 KiB
Protocol Buffer

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: BUSL-1.1
syntax = "proto3";
package hashicorp.vagrant;
option go_package = "github.com/hashicorp/vagrant/internal/server/proto/vagrant_server";
import "google/protobuf/any.proto";
import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/rpc/status.proto";
import "google/protobuf/struct.proto";
import "protostructure.proto";
import "plugin.proto";
// The service that is implemented for the server backend.
service Vagrant {
// GetVersionInfo returns information about the server. This RPC call does
// NOT require authentication. It can be used by clients to determine if they
// are capable of talking to this server.
rpc GetVersionInfo(google.protobuf.Empty) returns (GetVersionInfoResponse);
rpc UpsertBasis(UpsertBasisRequest) returns (UpsertBasisResponse);
rpc GetBasis(GetBasisRequest) returns (GetBasisResponse);
rpc FindBasis(FindBasisRequest) returns (FindBasisResponse);
rpc ListBasis(google.protobuf.Empty) returns (ListBasisResponse);
// UpsertProject upserts the project.
rpc UpsertProject(UpsertProjectRequest) returns (UpsertProjectResponse);
// GetProject returns the project.
rpc GetProject(GetProjectRequest) returns (GetProjectResponse);
rpc FindProject(FindProjectRequest) returns (FindProjectResponse);
// ListProjects returns a list of all the projects. There is no equivalent
// ListApplications because applications are a part of projects and you
// can use GetProject to get more information about the project.
rpc ListProjects(google.protobuf.Empty) returns (ListProjectsResponse);
// UpsertTarget upserts a target with a project. If the target
// is already registered this does nothing.
rpc UpsertTarget(UpsertTargetRequest) returns (UpsertTargetResponse);
rpc DeleteTarget(DeleteTargetRequest) returns (google.protobuf.Empty);
rpc GetTarget(GetTargetRequest) returns (GetTargetResponse);
rpc FindTarget(FindTargetRequest) returns (FindTargetResponse);
rpc ListTargets(google.protobuf.Empty) returns (ListTargetsResponse);
// CRUD operations for box
rpc UpsertBox(UpsertBoxRequest) returns (UpsertBoxResponse);
rpc DeleteBox(DeleteBoxRequest) returns (google.protobuf.Empty);
rpc GetBox(GetBoxRequest) returns (GetBoxResponse);
rpc ListBoxes(google.protobuf.Empty) returns (ListBoxesResponse);
rpc FindBox(FindBoxRequest) returns (FindBoxResponse);
// GetLogStream reads the log stream for a deployment. This will immediately
// send a single LogEntry with the lines we have so far. If there are no
// available lines this will NOT block and instead will return an error.
// The client can choose to retry or not.
rpc GetLogStream(GetLogStreamRequest) returns (stream LogBatch);
// QueueJob queues a job for execution by a runner. This will return as
// soon as the job is queued, it will not wait for execution.
rpc QueueJob(QueueJobRequest) returns (QueueJobResponse);
// CancelJob cancels a job. If the job is still queued this is a quick
// and easy operation. If the job is already completed, then this does
// nothing. If the job is assigned or running, then this will signal
// the runner about the cancellation but it may take time.
//
// This RPC always returns immediately. You must use GetJob or GetJobStream
// to wait on the status of the cancellation.
rpc CancelJob(CancelJobRequest) returns (google.protobuf.Empty);
// GetJob queries a job by ID.
rpc GetJob(GetJobRequest) returns (Job);
// INTERNAL: ListJobs lists all the jobs the server has processed. This
// is not yet ready for public use.
rpc _ListJobs(ListJobsRequest) returns (ListJobsResponse);
// ValidateJob checks if a job appears valid. This will check the job
// structure itself (i.e. missing fields) and can also check to ensure
// the job is assignable to a runner.
rpc ValidateJob(ValidateJobRequest) returns (ValidateJobResponse);
// GetJobStream opens a job event stream for a running job. This can be
// used to listen for terminal output and other events of a running job.
// Multiple listeners can open a job stream.
rpc GetJobStream(GetJobStreamRequest) returns (stream GetJobStreamResponse);
// Clean out old jobs from the job database
rpc PruneOldJobs(google.protobuf.Empty) returns (google.protobuf.Empty);
// GetRunner gets information about a single runner.
rpc GetRunner(GetRunnerRequest) returns (Runner);
// BootstrapToken returns the initial token for the server. This can only
// be requested once on first startup. After initial request this will
// always return a PermissionDenied error.
rpc BootstrapToken(google.protobuf.Empty) returns (NewTokenResponse);
// Generate a new invite token that users can exchange for a login token.
rpc GenerateInviteToken(InviteTokenRequest) returns (NewTokenResponse);
// Generate a new login token that users can use to login directly.
rpc GenerateLoginToken(google.protobuf.Empty) returns (NewTokenResponse);
// Exchange a invite token for a login token.
rpc ConvertInviteToken(ConvertInviteTokenRequest) returns (NewTokenResponse);
//----------------------------------------------------------------------
// Runner endpoints. These are expected to be called only by a runner.
// These are not meant to be public endpoints.
//----------------------------------------------------------------------
// RunnerConfig is called to register a runner and receive the configuration
// for the runner. The response is a stream so that the configuration can
// be updated later.
rpc RunnerConfig(stream RunnerConfigRequest) returns (stream RunnerConfigResponse);
// RunnerJobStream is called by a runner to request a single job for
// execution and update the status of that job.
rpc RunnerJobStream(stream RunnerJobStreamRequest) returns (stream RunnerJobStreamResponse);
}
/********************************************************************
* Server Info
********************************************************************/
message GetVersionInfoResponse {
VersionInfo info = 1;
}
message VersionInfo {
ProtocolVersion api = 1;
ProtocolVersion entrypoint = 2;
// Full version string (semver-syntax). This may be hidden/blank for
// security purposes so clients should gracefully handle blank values.
string version = 3;
message ProtocolVersion {
uint32 current = 1;
uint32 minimum = 2;
}
}
/********************************************************************
* Basic Data Model
********************************************************************/
message Vagrantfile {
// The Vagrantfile can be provided in a number of formats
enum Format {
JSON = 0;
HCL = 1;
RUBY = 2;
}
// Unfinalized Vagrantfile configuration. This content is
// still able to be used for file merges.
sdk.Args.Hash unfinalized = 1;
// Finalized Vagrantfile configuration. This is the final
// configuration which is not suitable for future merges.
sdk.Args.Hash finalized = 2;
// Raw contents of the file (not used for Ruby based Vagrantfile)
bytes raw = 3;
// Format of this Vagrantfile
Format format = 4;
// Original path of the Vagrantfile
sdk.Args.Path path = 5;
}
// This is considered the core configuration and information for the
// run. This correlates to a VAGRANT_HOME and contains information
// around projects which utilize this basis as well as the configuration
// for the basis
message Basis {
// Unique resource identifier (internal use)
string resource_id = 1;
// Name for this basis
string name = 2;
// Path to this basis
string path = 3;
// Projects within this basis
repeated sdk.Ref.Project projects = 4;
// Custom metadata
sdk.Args.MetadataSet metadata = 5;
// Serialized configuration of the basis (Vagrantfile)
Vagrantfile configuration = 6;
// TODO(spox): look back over these options and see if we
// still care about them (i'm thinking no)
// If true, then the `-remote` flag or the `vagrant build project/app`
// syntax can be used with a remote runner. If this is false, then
// this is not allowed. This is typically configured using the
// `runner {}` block in the vagrant config.
bool remote_enabled = 100;
// Where data is sourced for remote operations. If this isn't set, then
// there is no default data source and it will be an error if a job is
// queued for this project without a data source set. This is usually
// set using the `runner {}` block in the vagrant config.
Job.DataSource data_source = 101;
}
message Project {
// Unique resource identifier
string resource_id = 1;
// Name of this project
string name = 2;
// Path where this project lives
string path = 3;
// Targets associated with this project
repeated sdk.Ref.Target targets = 4;
// The basis which this project is within
sdk.Ref.Basis basis = 5;
// Custom metadata
sdk.Args.MetadataSet metadata = 6;
// Serialized configuration of the project (Vagrantfile)
Vagrantfile configuration = 7;
// TODO(spox): look back over these options and see if we
// still care about them (i'm thinking no)
// If true, then the `-remote` flag or the `vagrant build project/app`
// syntax can be used with a remote runner. If this is false, then
// this is not allowed. This is typically configured using the
// `runner {}` block in the vagrant config.
bool remote_enabled = 100;
// Where data is sourced for remote operations. If this isn't set, then
// there is no default data source and it will be an error if a job is
// queued for this project without a data source set. This is usually
// set using the `runner {}` block in the vagrant config.
Job.DataSource data_source = 101;
}
message Box {
// ID of the box
string resource_id = 1;
// This is the provider that this box is built for.
string provider = 2;
// The version of this box.
string version = 3;
// This is the directory on disk where this box exists.
string directory = 4;
// This is the metadata for the box. This is read from the "metadata.json"
// file that all boxes require.
google.protobuf.Struct metadata = 5;
// This is the URL to the version info and other metadata for this
// box.
string metadata_url = 6;
// The box name. This is the logical name used when adding the box.
string name = 7;
// Tracks the last automatic update for the box
google.protobuf.Timestamp last_update = 8;
}
message Target {
// Unique resource identifier
string resource_id = 1;
// Data directory for target specific files
sdk.Args.DataDir.Target datadir = 2;
// Name of the target
string name = 3;
// Project the target is associated
sdk.Ref.Project project = 4;
// State of the target
Operation.PhysicalState state = 5;
// Targets contained within this target
repeated sdk.Ref.Target subtargets = 6;
// Parent if this target is a subtarget
sdk.Ref.Target parent = 7;
// Public unique identifier for target
string uuid = 8;
// Custom metadata
sdk.Args.MetadataSet metadata = 9;
// Serialized configuration of the target (Vagrantfile)
sdk.Args.ConfigData configuration = 10;
// Specialized target information (from provider)
google.protobuf.Any record = 11;
// Provider name backing target
string provider = 12;
// Specialized target (machine)
message Machine {
// ID of machine as assigned by provider
string id = 1;
// Box information for guest
Box box = 7;
// User ID of machine creator
string uid = 9;
// State of the machine (Vagrant representation)
sdk.Args.Target.Machine.State state = 10;
}
}
/********************************************************************
* Shared Messages
********************************************************************/
// Ref contains shared messages used for references to other resources.
//
// Refs should be used when the full type shouldn't be embedded in the message.
message Ref {
// Component references a component.
message Component {
hashicorp.vagrant.Component.Type type = 1;
string name = 2;
}
// Operation references an operation (build, deploy, etc.). This can reference
// an operation in multiple ways so you must use the oneof to choose.
message Operation {
oneof target {
string id = 1;
TargetOperationSeq target_sequence = 2;
ProjectOperationSeq project_sequence = 3;
BasisOperationSeq basis_sequence = 4;
}
}
// TargetOperationSeq references an operation by sequence number anchored
// to a Target
message TargetOperationSeq {
sdk.Ref.Target target = 1;
uint64 number = 2;
}
// MachineOperationSeq references an operation by sequence number anchored
// to a Project
message ProjectOperationSeq {
sdk.Ref.Project project = 1;
uint64 number = 2;
}
// BasisOperationSeq references an operation by sequence number anchored
// to a Basis
message BasisOperationSeq {
sdk.Ref.Basis basis = 1;
uint64 number = 2;
}
// Runner references a runner process which executes operations. This
// can reference a runner by any of the more specific types, such as
// by ID. If you want to constrain which runners can be targeted,
// a different ref type should be used.
message Runner {
oneof target {
RunnerAny any = 1;
RunnerId id = 2;
}
}
// RunenrId references a runner by ID.
message RunnerId {
string id = 1;
}
// RunnerAny will reference any runner.
message RunnerAny {}
// Vagrantfile references a Vagrantfile
message Vagrantfile {
string resource_id = 1;
}
}
// Component represents metadata about a component. A component is the
// generic name for a plugin type
message Component {
// type of the component
Type type = 1;
// name of the component
string name = 2;
string server_addr = 3;
// Supported component types, the values here MUST match the enum values
// in the Go sdk/component package exactly. A test in internal/server
// validates this.
enum Type {
UNKNOWN = 0;
COMMAND = 1;
COMMUNICATOR = 2;
GUEST = 3;
HOST = 4;
PROVIDER = 5;
PROVISIONER = 6;
SYNCEDFOLDER = 7;
AUTHENTICATOR = 8;
LOGPLATFORM = 9;
LOGVIEWER = 10;
MAPPER = 11;
CONFIG = 12;
PLUGININFO = 13;
PUSH = 14;
DOWNLOADER = 15;
}
}
// Status represents the status of an async operation.
message Status {
// state is the state of this operation.
State state = 1;
// details may be non-empty to provide human-friendly information
// about the current status. This may change between status updates
// for the same state to provide updated details about the state.
string details = 2;
// error is set if the state == ERROR with the error that occurred.
google.rpc.Status error = 3;
// start_time is the time the operation was started.
google.protobuf.Timestamp start_time = 4;
// complete_time is the time the operation completed (success or fail).
google.protobuf.Timestamp complete_time = 5;
enum State {
UNKNOWN = 0;
RUNNING = 1;
SUCCESS = 2;
ERROR = 3;
}
}
message StatusFilter {
// Filters are ANDed together.
repeated Filter filters = 1;
message Filter {
oneof filter {
// state will match any status that has the given state.
Status.State state = 2;
}
}
}
// Operation is a shared message type used to describe "operations" which are
// executions of a build, deploy, etc. This just contains shared message types
// used for fields. Each individual operation has their own message type
// such as Deployment.
message Operation {
// PhysicalState is the state of any physical resources associated with
// an operation. A physical resource for example is the actual container
// that might be created alongside an operation.
enum PhysicalState {
UNKNOWN = 0;
PENDING = 1;
CREATED = 2;
DESTROYED = 3;
HALTED = 4;
NOT_CREATED = 5;
};
}
// OperationOrder is a shared message type used for controlling the order
// of results in queries for app operations such as build, deploys, etc.
message OperationOrder {
// Order for the results.
Order order = 2;
bool desc = 3;
// Limit the number of results
uint32 limit = 4;
enum Order {
UNSET = 0;
START_TIME = 1;
COMPLETE_TIME = 2;
}
}
/********************************************************************
* Queueing
********************************************************************/
message QueueJobRequest {
// The job to queue. See the Job message documentation for more details
// on what to set.
Job job = 1;
// Set an expiration duration. If the job is not assigned and acked
// in the given duration then the job will be automatically cancelled.
string expires_in = 2;
}
message QueueJobResponse {
// the job ID that was queued. This can be used with other RPC methods
// to check on the status, cancel, etc.
string job_id = 1;
}
message CancelJobRequest {
// The job to cancel
string job_id = 1;
}
message ValidateJobRequest {
// The job to validate.
Job job = 1;
// If true, will NOT validate that the job is assignable.
bool disable_assign = 2;
}
message ValidateJobResponse {
// valid will be true if the job structure is valid. If it is invalid
// validation_error will be set with a reason.
bool valid = 1;
google.rpc.Status validation_error = 2;
// assignable will be true if the job is assignable at this point-in-time.
// Assignable means that there are runners registered with the server that
// claim to be able to service this job. Note that this is a point-in-time
// result so it doesn't guarantee that a job will be serviced when queued.
// Additionally, assignability doesn't imply anything about queue length,
// so the job may still be queued for some time.
//
// This will always be false if "valid" is false since we don't check
// assignability of invalid jobs.
bool assignable = 3;
}
// A Job is a job that executes on a runner and is queued by QueueOperation.
message Job {
reserved 58 to 79; // future operation range
// id of the job. This is generated on the server side when queued. If
// you are queueing a job, this must be empty or unset.
string id = 1;
// The application to target for the operation. Some operations may allow
// certain fields of this to be empty, so check with the operation
// documentation to determine what needs to be set. Generally, project
// must be set.
oneof scope {
sdk.Ref.Basis basis = 2;
sdk.Ref.Project project = 3;
sdk.Ref.Target target = 4;
}
// The runner that should execute this job. This is required.
Ref.Runner target_runner = 5;
// Labels are the labels to set for this operation.
map<string, string> labels = 6;
// data_source determines where the data to operate on (such as the
// application source code and Vagrant configuration) comes from.
// If this is not set then QueueJob will populate this if a default
// data source is configured for the target project.
//
// The overrides will set overrides of configs for the data source. This is
// data source dependent but this allows for example setting the Git ref
// without knowing the full data source. Invalid overrides will fail the
// job.
DataSource data_source = 7;
map<string, string> data_source_overrides = 8;
// The operation to execute. See the message docs for details on the operation.
oneof operation {
Noop noop = 50;
AuthOp auth = 51;
DocsOp docs = 52;
ValidateOp validate = 53;
CommandOp command = 54;
InitOp init = 55;
InitBasisOp init_basis = 56;
InitProjectOp init_project = 57;
}
//-----------------------------------------------------------------
// Server-side fields - the fields below are all set by the server
// and should not be set on the queueing request.
//-----------------------------------------------------------------
// state of the job
State state = 100;
// The runner that was assigned to execute this job. Note that the
// runner may have been ephemeral and may no longer exist.
Ref.RunnerId assigned_runner = 101;
// The time when the job was queued.
google.protobuf.Timestamp queue_time = 102;
google.protobuf.Timestamp assign_time = 103;
google.protobuf.Timestamp ack_time = 104;
google.protobuf.Timestamp complete_time = 105;
// error is set if state == ERROR
google.rpc.Status error = 106;
// result is set based on the operation specified. A nil result is possible
// for some operations.
Result result = 107;
// cancel time is the time that cancellation of this job was requested.
// If this is zero then this job was not cancelled. Note that this is the
// cancellation _request_ time. The actual time a job ended is noted by
// the complete_time field.
google.protobuf.Timestamp cancel_time = 108;
// expire time is the time when this job would expire. If this isn't set
// then this is a non-expiring job. This will remain set even if the job
// never expired because it was accepted and run. This field can be used
// to detect that it was configured to expire.
google.protobuf.Timestamp expire_time = 109;
enum State {
UNKNOWN = 0;
QUEUED = 1; // queued and waiting for assignment
WAITING = 2; // assigned to a runner, waiting for runner to ack
RUNNING = 3; // runner acked and is executing
ERROR = 4; // job failed
SUCCESS = 5; // job succeeded
}
message Result {
AuthResult auth = 1;
DocsResult docs = 2;
ValidateResult validate = 3;
InitResult init = 4;
CommandResult run = 5;
InitBasisResult basis = 6;
InitProjectResult project = 7;
}
message DataSource {
oneof source {
// local means the runner has access to the data locally and will
// know what to do. This is primarily only useful if the target_runner
// is a specific runner and should not be used by any runner unless your
// runners are configured to have access to the proper data.
Local local = 1;
// git will check out the data from a Git repository.
Git git = 2;
}
}
message Local {}
message Git {
// url of the repository to clone. Local paths are not allowed.
string url = 1;
// a ref to checkout. If this isn't specified, then the default
// ref that is cloned from the URL above will be used.
string ref = 2;
// path is a subdirectory within the checked out repository to
// go into for the configuration. This must be a relative path
// and may not contain ".."
string path = 3;
}
// Noop operations do nothing. This is primarily used for testing.
// This operation will still download the data from the data source.
// A noop may be useful outside of testing to verify a runner is
// executing properly or can access data properly.
message Noop {}
// ValidateOp validates various aspects of a configuration.
message ValidateOp {}
message ValidateResult {}
// InitOp initializes a Vagrant configuration and returns information
// about the runtime.
message InitOp { }
message InitResult {
repeated Action actions = 1;
repeated sdk.Command.CommandInfo commands = 2;
repeated Hook hooks = 3;
}
message InitBasisOp { }
message InitBasisResult {
sdk.Ref.Basis basis = 1;
}
message InitProjectOp { }
message InitProjectResult {
sdk.Ref.Project project = 1;
}
message Action {
string name = 1;
string source = 2;
}
message Hook {
string target_action_name = 1;
Location location = 2;
string action_name = 3;
string source = 4;
enum Location {
BEFORE = 0;
AFTER = 1;
}
}
// CommandOp runs a command
message CommandOp {
// The scope this command was run within
oneof scope {
sdk.Ref.Target target = 1;
sdk.Ref.Project project = 2;
sdk.Ref.Basis basis = 3;
}
// Name of the command executed
string command = 4;
// id is the unique ID for this task
string id = 5;
// Status is the current status of the task
Status status = 6;
// State of any resources related to the task
Operation.PhysicalState state = 7;
// Component responsible for this task
Component component = 8;
// Any labels which were set for this task
map<string,string> labels = 9;
// ID of the job that created this task
string job_id = 10;
// Map of cli arguments
sdk.Command.Arguments cli_args = 11;
Vagrantfile vagrantfile = 12;
}
message CommandResult {
// Operation which was run
Operation task = 1;
// True if the task did not encounter any errors
bool run_result = 2;
// Provides any error information
google.rpc.Status run_error = 3;
// Exit code if applicable
sint32 exit_code = 4;
}
// AuthOp is the configuration to authenticate any plugins.
message AuthOp {
// if true, auth will only be checked but not attempted. Currently
// this must ALWAYS be true. Only authentication checking is supported.
bool check_only = 1;
// if set, only the component matching this reference will be authed.
// If this component doesn't exist, an error will be returned. If this is
// unset, all components wll be authed.
Ref.Component component = 2;
}
message AuthResult {
// results are the list of components that were checked
repeated Result results = 1;
message Result {
// component that was checked
Component component = 1;
// result of the auth check. If the component didn't implement the
// auth interface this will be set to true. You can check for interface
// implementation using auth_supported. If auth is attempted, the auth
// operation will recheck the status and this value will reflect the
// check post-auth attempt. You can use this to verify if the auth
// succeeded.
bool check_result = 2;
google.rpc.Status check_error = 3;
// this is true if the component was authenticated using the Auth
// callback. If false, then no attempt was made to authenticate. This
// can be on purpose for example if "check_only" is set to true on
// the op.
bool auth_completed = 4;
google.rpc.Status auth_error = 5;
// auth supported is true if this component implemented the auth
// interface.
bool auth_supported = 6;
}
}
message DocsOp {
}
message DocsResult {
// results are the list of components that were checked
repeated Result results = 1;
message Result {
// component that the docs are for
Component component = 1;
Documentation docs = 2;
}
}
}
message Documentation {
string description = 1;
string example = 2;
string input = 3;
string output = 4;
map<string, Field> fields = 5;
repeated Mapper mappers = 6;
message Field {
string name = 1;
string synopsis = 2;
string summary = 3;
bool optional = 4;
string env_var = 5;
string type = 6;
string default = 7;
}
message Mapper {
string input = 1;
string output = 2;
string description = 3;
}
}
message GetJobRequest {
// ID of the job to request.
string job_id = 1;
}
message ListJobsRequest {}
message ListJobsResponse {
repeated Job jobs = 1;
}
message GetJobStreamRequest {
string job_id = 1;
// Future: can add a timestamp here so that only output from after the
// given timestamp is sent down.
}
message GetJobStreamResponse {
oneof event {
// Open is sent as confirmation that the job stream successfully opened.
// This will be sent immediately by the server if the job ID is valid.
// This is useful since other events such as terminal output may not
// happen for a long time while the job is executing, queued, etc.
//
// This is ALWAYS sent. If the job is already completed, this will be
// sent first followed immediately by a Complete.
Open open = 1;
// state is sent when there is a job state change event.
State state = 2;
// terminal output. On initial connection, the server may send buffered
// historical terminal data so there isn't a race between queueing a job
// and getting its first byte output. You can determine this based on the
// flag on Terminal.
Terminal terminal = 3;
// an error regarding the stream itself, rather than the executing job.
// For example, if you request a job stream for an invalid job ID,
// this will be sent back. If this is sent, no further messages will
// be sent and the stream is terminated.
//
// For errors in job execution, see "complete".
Error error = 4;
// job completion, no more events will follow this one. This can be
// both success or failure, the event must be checked. Any errors
// in complete are errors from the job execution itself.
Complete complete = 5;
}
message Open {}
message State {
// previous and current are the previous and current states, respectively.
Job.State previous = 1;
Job.State current = 2;
// The full updated job is also sent because additional fields may be
// set depending on the state (such as the assigned runner, assignment
// times, etc.)
Job job = 3;
// canceling is true if the job was requested to be canceled.
bool canceling = 4;
}
message Terminal {
repeated Event events = 1;
// buffered if true signifies that the data being sent is from the
// server buffer and is historical vs real-time since the stream was
// opened. If this is true, all lines are buffered. We will never mix
// buffered and non-buffered lines.
bool buffered = 2;
message Event {
// timestamp of the event as seen by the runner. This might be
// skewed from the server or the client but relative to all other
// line output, it will be accurate.
google.protobuf.Timestamp timestamp = 1;
oneof event {
Line line = 2;
Status status = 3;
NamedValues named_values = 4;
Raw raw = 5;
Table table = 6;
StepGroup step_group = 7;
Step step = 8;
}
message Status {
string status = 1;
string msg = 2;
bool step = 3;
}
message Line {
string msg = 1;
string style = 2;
bool disable_new_line = 3;
string color = 4;
}
message Raw {
bytes data = 1;
bool stderr = 2;
}
message NamedValue {
string name = 1;
string value = 2;
}
message NamedValues {
repeated NamedValue values = 1;
}
message TableEntry {
string value = 1;
string color = 2;
}
message TableRow {
repeated TableEntry entries = 1;
}
message Table {
repeated string headers = 1;
repeated TableRow rows = 2;
}
message StepGroup {
bool close = 1;
}
message Step {
int32 id = 1;
bool close = 2;
string msg = 3;
string status = 4;
bytes output = 5;
}
}
}
message Error {
google.rpc.Status error = 1;
}
message Complete {
// error, if set, is an error that occurred as part of the job execution
// and resulted in job termination. This is different than the "error"
// event which is an error in the stream itself.
google.rpc.Status error = 1;
// Result will be set to the final result of the job execution, if any.
Job.Result result = 2;
}
}
/********************************************************************
* Runner
********************************************************************/
message Runner {
// id is a unique ID generated by the runner. This should be a UUID or some
// other guaranteed unique mechanism. This is not an auth mechanism, just
// a way to associate an ID to a runner.
string id = 1;
// The runner will only be assigned jobs that directly target this
// runner by ID. This is used by local runners to prevent external
// jobs from being assigned to them.
bool by_id_only = 2;
// Components are the list of components that the runner supports. This
// is used to match jobs to this runner.
repeated Component components = 3;
}
message RunnerConfigRequest {
oneof event {
Open open = 1;
}
message Open {
// Runner to register. See Runner for what fields can be set.
Runner runner = 1;
}
}
message RunnerConfigResponse {
// config is any updated configuration for the runner.
RunnerConfig config = 2;
}
message RunnerConfig {
// The configuration for the runner. Any locally set runner config will
// take priority in a conflict. This allows operators to setup runners
// with specific configuration without fear that the server will override
// them.
repeated ConfigVar config_vars = 1;
}
message RunnerJobStreamRequest {
oneof event {
// request MUST BE the first message sent by a client. This is used to
// signify that a runner is ready to accept a job. This is only ever
// sent once. Once a job is complete, the client must terminate the
// stream and open a new connection.
Request request = 1;
// ack is sent to accept a job assignment from the server. This
// should be sent soon after the job is assigned to avoid the job being
// reassigned and duplicated.
Ack ack = 2;
// complete is sent on job completion. This is only sent if there
// were no errors, so this signals a successful completion. An erroneous
// completion is signaled by sending an Error event.
Complete complete = 3;
// error is sent when there was an error with job execution (after
// accept was sent). This signals that the job failed and it cannot
// be retried. This terminates the job and no other events should be
// sent.
Error error = 4;
// terminal output from the job.
GetJobStreamResponse.Terminal terminal = 5;
// heartbeat that the job is still running.
Heartbeat heartbeat = 6;
}
message Request {
string runner_id = 1;
}
message Ack {}
message Complete {
Job.Result result = 1;
}
message Error {
google.rpc.Status error = 1;
}
message Heartbeat {}
}
message RunnerJobStreamResponse {
oneof event {
// assignment is when a job is assigned to this job stream. This
// will happen ONLY in response to a "Request" message from the client.
JobAssignment assignment = 1;
// cancel is sent when a cancel request is made.
JobCancel cancel = 2;
}
message JobAssignment {
Job job = 1;
}
message JobCancel {
bool force = 1;
}
}
message GetRunnerRequest {
// ID of the runner to request.
string runner_id = 1;
}
/********************************************************************
* Projects & Machines
********************************************************************/
message UpsertBasisRequest {
// Basis to upsert. See the message for what fields to set.
Basis basis = 1;
}
message UpsertBasisResponse {
Basis basis = 1;
}
message GetBasisRequest {
sdk.Ref.Basis basis = 1;
}
message GetBasisResponse {
Basis basis = 1;
}
message FindBasisRequest {
Basis basis = 1;
}
message FindBasisResponse {
Basis basis = 2;
}
message ListBasisResponse {
repeated sdk.Ref.Basis basis = 1;
}
message UpsertProjectRequest {
// Project to upsert. See the message for what fields to set.
Project project = 1;
}
message UpsertProjectResponse {
Project project = 1;
}
message GetProjectRequest {
sdk.Ref.Project project = 1;
}
message GetProjectResponse {
Project project = 1;
}
message FindProjectRequest {
Project project = 1;
}
message FindProjectResponse {
Project project = 2;
}
message ListProjectsResponse {
repeated sdk.Ref.Project projects = 1;
}
message UpsertTargetRequest {
// project to register the app against
sdk.Ref.Project project = 1;
Target target = 2;
}
message UpsertTargetResponse {
Target target = 1;
}
message DeleteTargetRequest {
sdk.Ref.Project project = 1;
sdk.Ref.Target target = 2;
}
message GetTargetRequest {
sdk.Ref.Project project = 1;
sdk.Ref.Target target = 2;
}
message GetTargetResponse {
Target target = 1;
}
message FindTargetRequest {
Target target = 1;
}
message FindTargetResponse {
Target target = 2;
}
message ListTargetsResponse {
repeated sdk.Ref.Target targets = 1;
}
message UpsertBoxRequest {
Box box = 1;
}
message UpsertBoxResponse {
Box box = 1;
}
message DeleteBoxRequest {
sdk.Ref.Box box = 1;
}
message GetBoxRequest {
sdk.Ref.Box box = 2;
}
message GetBoxResponse {
Box box = 1;
}
message ListBoxesResponse {
repeated sdk.Ref.Box boxes = 1;
}
message FindBoxRequest {
sdk.Ref.Box box = 2;
}
message FindBoxResponse {
Box box = 1;
}
/********************************************************************
* Logs
********************************************************************/
message GetLogStreamRequest {
oneof scope {
sdk.Ref.Basis basis = 1;
sdk.Ref.Project project = 2;
sdk.Ref.Target target = 3;
}
// limit_backlog sets the maximum backlog lines to return on the initial
// connection. This setting is per instance, not global. The maximum
// backlog to expect is `n * limit_backlog` where n is the number of
// instances.
//
// A negative value will not limit the backlog.
//
// A value of zero will default to a value of 50.
int32 limit_backlog = 4;
}
message LogBatch {
string deployment_id = 1;
string instance_id = 2;
repeated Entry lines = 3;
message Entry {
google.protobuf.Timestamp timestamp = 1;
string line = 2;
}
}
/********************************************************************
* Config
********************************************************************/
message ConfigVar {
string name = 1;
string value = 2;
// scope is the scoping for this config variable.
oneof scope {
sdk.Ref.Basis basis = 3;
sdk.Ref.Project project = 4;
sdk.Ref.Target target = 5;
// This specifies that the configuration variable is for runners only.
// You can use more complex runner targeting via this ref.
Ref.Runner runner = 6;
}
}
message ConfigSetRequest {
repeated ConfigVar variables = 1;
}
message ConfigSetResponse {}
message ConfigGetRequest {
// scope is the scoping for this config variable.
oneof scope {
sdk.Ref.Target target = 2;
sdk.Ref.Project project = 3;
sdk.Ref.Basis basis = 4;
Ref.RunnerId runner = 5;
}
// Get all configuration entries under the given prefix. When empty,
// returns all config variables.
string prefix = 1;
}
message ConfigGetResponse {
repeated ConfigVar variables = 1;
}
/********************************************************************
* Exec
********************************************************************/
message ExecStreamRequest {
oneof event {
Start start = 1;
Input input = 2;
WindowSize winch = 3;
}
message Start {
// Deployment to exec into
string deployment_id = 1;
// Args including the command at args[0] to execute.
repeated string args = 2;
// Pty is set if we should allocate a PTY for this exec stream.
PTY pty = 3;
}
message Input {
bytes data = 1;
}
message PTY {
bool enable = 1;
// term is the TERM value to request on the remote side. This should be set.
string term = 2;
// window_size is the initial window size
WindowSize window_size = 3;
}
message WindowSize {
int32 rows = 1;
int32 cols = 2;
int32 width = 3;
int32 height = 4;
}
}
message ExecStreamResponse {
oneof event {
// Open is always sent first no matter what (unless there is an error
// in which case the stream will exit). This should be used to validate
// that the exec process started properly.
Open open = 3;
Output output = 1;
Exit exit = 2;
}
message Open {}
message Exit {
int32 code = 1;
}
message Output {
Channel channel = 1;
bytes data = 2;
enum Channel {
UNKNOWN = 0;
STDOUT = 1;
STDERR = 2;
}
}
}
/********************************************************************
* Entrypoint
********************************************************************/
message EntrypointConfigRequest {
// id of the deployment that this instance is a part of
string deployment_id = 1;
// instance_id is a unique ID generated by the running entrypoint. This is
// not an auth mechanism, just a way to associate data with the correct instance.
string instance_id = 2;
}
message EntrypointConfigResponse {
EntrypointConfig config = 2;
}
message EntrypointConfig {
// Exec are requested exec sessions for this instance.
repeated Exec exec = 1;
repeated ConfigVar env_vars = 2;
// The URL service configuration. This might be nil. If this is nil,
// then the URL service is disabled.
URLService url_service = 3;
message Exec {
int64 index = 1;
repeated string args = 2;
ExecStreamRequest.PTY pty = 3;
}
message URLService {
// address to the control server and the token for auth
string control_addr = 1;
string token = 2;
// labels to register this instance under
string labels = 3;
}
}
// A batch of data for log streaming from the entrypoint.
message EntrypointLogBatch {
// instance_id is a unique ID generated by the running entrypoint. This is
// not an auth mechanism, just a way to associate data with the correct instance.
string instance_id = 1;
// lines is the set of lines
repeated LogBatch.Entry lines = 2;
}
message EntrypointExecRequest {
oneof event {
// open MUST BE the first message sent by a client. This will be used
// by the server side to perform some initialization. If the first message
// is not open the server will close the connection.
Open open = 1;
// exit should be sent as a final message type after the command exits.
Exit exit = 2;
// output contains stdout/stderr
Output output = 3;
// error indicates an error occurred. This will terminate the stream.
Error error = 4;
}
message Open {
string instance_id = 1;
int64 index = 2;
}
message Exit {
int32 code = 1;
}
message Output {
Channel channel = 1;
bytes data = 2;
enum Channel {
UNKNOWN = 0;
STDOUT = 1;
STDERR = 2;
}
}
message Error {
google.rpc.Status error = 1;
}
}
message EntrypointExecResponse {
oneof event {
// input is raw stdin input from the client
bytes input = 1;
// winch is SIGWNCH information for window sizing
ExecStreamRequest.WindowSize winch = 2;
// opened is sent when the entrypoint session is successfully opened.
// The value of this message is meaningless. The existence of the message
// itself is a signal that the stream was opened properly.
bool opened = 3;
}
}
/********************************************************************
* Token
********************************************************************/
// The outer structure of the token that is directly Marshaled and
// ASCII armored.
message TokenTransport {
// A Marshaled token, stored as bytes because we need to to validate
// it with the given signature.
bytes body = 1;
// The signature of body for validation.
bytes signature = 2;
// The key used to generate the signature.
string key_id = 3;
// Any configuration style metadata that can be passed along with the token
// without invalidating the token body itself.
map<string, string> metadata = 4;
}
// The authenticated Token information. This is used to authenticate requests.
message Token {
// The user that the token is fore.
string user = 1;
// A random id for the token. Also functions as a nonce when signing.
bytes token_id = 2;
// When the token is valid until. After the given date, the token will be rejected.
// When this is not set, the token is valid forever.
google.protobuf.Timestamp valid_until = 3;
// Indicates whether or not this token can be used for to authenticate RPCs.
bool login = 4;
// Inidicates whether or not this token can be used as an invite.
bool invite = 5;
// Entrypoint if set indicates that this token is for entrypoint binary
// usage only and specific restrictions are specified in this message.
Entrypoint entrypoint = 6;
message Entrypoint {
// deployment id is the deployment to restrict this token to.
string deployment_id = 1;
}
}
// Represents a key used to sign tokens using HMAC
message HMACKey {
// The identifier of the key.
string id = 1;
// A randomly generated key used to sign tokens with
bytes key = 2;
}
// Passed with GenerateInviteToken with the params on how the invite token should
// be generate.
message InviteTokenRequest {
// How long the token should be valid until. The resulting token has a timestamp
// encoded within it by adding the current time to this duration.
string duration = 1;
// If set, the token generated by this invite code is for the given entrypoint.
Token.Entrypoint entrypoint = 2;
}
// Returned by any action that creates a token.
message NewTokenResponse {
// The new token which can be presented to whichever API expects it.
string token = 1;
}
// Passed to ConvertInviteToken to create a new token that can be used to authenticate RPCs.
message ConvertInviteTokenRequest {
// A token previous returned by GenerateInviteToken.
string token = 1;
}
/********************************************************************
* Snapshot/Restore
********************************************************************/
message CreateSnapshotResponse {
oneof event {
// Open is sent as the opening message with information about the
// snapshot. This is always sent first (before any data).
Open open = 1;
// Chunk is a next chunk of data. You should continue to expect
// data until an EOF is received on the stream.
bytes chunk = 2;
}
// One day we may add information here. For now we are reserving this.
message Open {}
}
message RestoreSnapshotRequest {
oneof event {
// Open MUST be sent as the first message and sent exactly once.
// This sets the settings for the restore.
Open open = 1;
// Chunk is a chunk of restore data. The restore snapshot API will
// continue reading data until an EOF is received (the write end is
// closed).
bytes chunk = 2;
}
message Open {
// If true, the server will exit after the restore is staged. This will
// SHUT DOWN the server and some external process you created is expected
// to bring it back. The Vagrant server on its own WILL NOT automatically
// restart. You should only set this if you have some operation to
// automate restart such as running in Nomad or Kubernetes.
bool exit = 1;
}
}
// Snapshot is the encoding of the snapshot for all snapshot APIs.
// The encoding is proto.Message delimited data. This is also the encoding
// expected if the vagrant-restore.db file is copied manually from the
// snapshot data.
//
// For snapshots, the Header message is always guaranteed first. After that,
// it is NOT guaranteed that only data chunks are sent. It is only guaranteed
// that the data chunks are over at EOF. Unknown messages can probably be
// ignored.
//
// It is HIGHLY RECOMMENDED you do not modify snapshots, but these messages
// are publicly exported so that you can try to inspect snapshots.
message Snapshot {
// Header is _always_ the first message encoded into a snapshot. If
// this isn't present, the entire snapshot can be considered corrupt.
message Header {
// version is the version of Vagrant that generated this snapshot.
VersionInfo version = 1;
// format is the format of the remaining messages. This can be used
// to determine what messages to expect following the header.
Format format = 2;
enum Format {
UNKNOWN = 0;
BOLT = 1; // Expect a series of BoltChunk messages
}
}
// Trailer is sent as the final message encoded into a snapshot. Detecting
// when the trailer is is dependent on the format.
message Trailer {
// checksum is the checksum of all the bytes up to but not including
// this proto message. The checksum is for the raw uncompressed bytes.
oneof checksum {
string sha256 = 1; // SHA-256 checksum
}
}
// BoltChunk is a single chunk of data for BoltDB if the snapshot format
// is BOLT. A chunk will always contain items designated for a single bucket,
// but a bucket may be repeated multiple time across chunks if there are
// too many items in the bucket.
//
// The final BoltChunk will have trailer set to true. Immediaetly following
// that chunk will be the Trailer message.
message BoltChunk {
// bucket is the name of the bucket. This may be empty. If this is empty,
// then this chunk should be ignored.
string bucket = 1;
// items is a id/value mapping of all this chunk of items in this bucket
map<string, bytes> items = 2;
// final is true if this is the last bolt chunk being written.
bool final = 3;
}
}