using System; using System.Collections.Generic; using System.Linq; using System.Text; using UniversalEditor.Compression.Modules.Explode.Internal; namespace UniversalEditor.Compression.Modules.Explode { public class ExplodeCompressionModule : CompressionModule { public override string Name { get { return "Explode"; } } protected override void CompressInternal(System.IO.Stream inputStream, System.IO.Stream outputStream) { throw new NotImplementedException(); } protected override void DecompressInternal(System.IO.Stream inputStream, System.IO.Stream outputStream, int inputLength, int outputLength) { Ptr _ptrOut = new Ptr(); _ptrOut.AutoResize = true; this.blast(inputStream, outputStream, _ptrOut, 0); } private uint _explodeInput(object how, ref Ptr buf) { return 0; } private int _explodeOutput(object how, Ptr buf, uint len) { return 0; } // translated to C# for Universal Editor by Michael Becker // modified by Luigi Auriemma because if MAXWIN is the standard 4096 then not all the data is decompressed /* blast.c * Copyright (C) 2003 Mark Adler * version 1.1, 16 Feb 2003 * * This software is provided 'as-is', without any express or implied * warranty. In no event will the author be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * Mark Adler madler@alumni.caltech.edu * * blast.c decompresses data compressed by the PKWare Compression Library. * This function provides functionality similar to the explode() function of * the PKWare library, hence the name "blast". * * This decompressor is based on the excellent format description provided by * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the * example Ben provided in the post is incorrect. The distance 110001 should * instead be 111000. When corrected, the example byte stream becomes: * * 00 04 82 24 25 8f 80 7f * * which decompresses to "AIAIAIAIAIAIA" (without the quotes). */ /* * Change history: * * 1.0 12 Feb 2003 - First version * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data */ /// /// Maximum code length /// private const int MAXBITS = 13; /* * Return need bits from the input stream. This always leaves less than * eight bits in the buffer. bits() works properly for need == 0. * * Format notes: * * - Bits are stored in bytes from the least significant bit to the most * significant bit. Therefore bits are dropped from the bottom of the bit * buffer, using shift right, and new bytes are appended to the top of the * bit buffer, using shift left. */ private static int bits(ExplodeState s, int need) { // bit accumulator int val; // load at least need bits into val val = s.bitbuf; while (s.bitcnt < need) { if (s.left == 0) { readInput(ref s); } val |= (int)(s.indata.GetValueThenIncrement() << s.bitcnt); // load eight bits s.left--; s.bitcnt += 8; } // drop need bits and update buffer, always zero to seven bits left s.bitbuf = val >> need; s.bitcnt -= need; // return need bits, zeroing the bits above that return val & ((1 << need) - 1); } private static void readInput(ref ExplodeState s) { byte[] tmpBuffer = new byte[4096]; s.left = (uint)s.inputStream.Read(tmpBuffer, 0, tmpBuffer.Length); byte[] buffer = s.indata.ToArray(); if (buffer.Length < s.left) { } if (s.left == 0) throw new OutOfInputException(); } /* * Format notes: * * - The codes as stored in the compressed data are bit-reversed relative to * a simple integer ordering of codes of the same lengths. Hence below the * bits are pulled from the compressed data one at a time and used to * build the code value reversed from what is in the stream in order to * permit simple integer comparisons for decoding. * * - The first code for the shortest length is all ones. Subsequent codes of * the same length are simply integer decrements of the previous code. When * moving up a length, a one bit is appended to the code. For a complete * code, the last code of the longest length will be all zeros. To support * this ordering, the bits pulled during decoding are inverted to apply the * more "natural" ordering starting with all zeros and incrementing. */ /// /// Decode a code from the stream s using huffman table h. /// /// /// /// /// The decoded symbol, or a negative value if there is an error. If all of the lengths are /// zero (i.e. an empty code), or if the code is incomplete and an invalid code is received, /// then -9 is returned after reading MAXBITS bits. /// private static int decode(ExplodeState s, ref ExplodeHuffman h) { int len; /* current number of bits in code */ int code; /* len bits being decoded */ int first; /* first code of length len */ int count; /* number of codes of length len */ int count_ptr = 0; int index; /* index of first code of length len in symbol table */ int bitbuf; /* bits from stream */ int left; /* bits left in next or left to process */ Ptr next; // next number of codes bitbuf = s.bitbuf; left = s.bitcnt; code = first = index = 0; len = 1; next = h.count + 1; while (true) { while (left-- != 0) { code |= (bitbuf & 1) ^ 1; /* invert code */ bitbuf >>= 1; count = next.GetValueThenIncrement(); if (code < first + count) { // if length len, return symbol s.bitbuf = bitbuf; s.bitcnt = (s.bitcnt - len) & 7; return h.symbol[index + (code - first)]; } index += count; /* else update for next length */ first += count; first <<= 1; code <<= 1; len++; } left = (MAXBITS+1) - len; if (left == 0) break; if (s.left == 0) { readInput(ref s); if (s.left == 0) throw new OutOfInputException(); } bitbuf = s.indata.GetValue() + 1; // *(s.in)++; s.left--; if (left > 8) left = 8; } return -9; /* ran out of codes */ } /// /// Given a list of repeated code lengths rep[0..n-1], where each byte is a count (high four /// bits + 1) and a code length (low four bits), generate the list of code lengths. This /// compaction reduces the size of the object code. Then given the list of code lengths /// length[0..n-1] representing a canonical Huffman code for n symbols, construct the /// tables required to decode those codes. Those tables are the number of codes of each /// length, and the symbols sorted by length, retaining their original order within each /// length. /// /// /// /// /// Zero for a complete code set, negative for an over-subscribed code set, and positive for an incomplete code set. /// /// /// The tables can be used if the return value is zero or positive, but they cannot be used /// if the return value is negative. If the return value is zero, it is not possible for /// decode() using that table to return an error--any stream of enough bits will resolve to /// a symbol. If the return value is positive, then it is possible for decode() using that /// table to return an error for received codes past the end of the incomplete lengths. /// private static int construct(ref ExplodeHuffman h, byte[] rep) { int n = rep.Length; int symbol; // current symbol when stepping through length[] int len; // current length when stepping through h.count[] int left; // number of possible codes left of current length short[] offs = new short[MAXBITS + 1]; // offsets in symbol table for each length short[] length = new short[256]; // code lengths Ptr repP = new Ptr(rep); // convert compact repeat counts into symbol bit length list symbol = 0; do { len = repP.GetValueThenIncrement(); // *rep++ left = (len >> 4) + 1; len &= 15; do { length[symbol++] = (short)len; } while (--left != 0); } while (--n != 0); n = symbol; // count number of codes of each length for (len = 0; len <= MAXBITS; len++) h.count[len] = 0; for (symbol = 0; symbol < n; symbol++) { (h.count[length[symbol]])++; // assumes lengths are within bounds } if (h.count[0] == n) { // no codes! return 0; // complete, but decode() will fail } // check for an over-subscribed or incomplete set of lengths left = 1; // one possible code of zero length for (len = 1; len <= MAXBITS; len++) { left <<= 1; // one more bit, double codes left left -= h.count[len]; // deduct count from possible codes if (left < 0) return left; // over-subscribed--return negative } // left > 0 means incomplete // generate offsets into symbol table for each length for sorting offs[1] = 0; for (len = 1; len < MAXBITS; len++) { offs[len + 1] = (short)(offs[len] + h.count[len]); // h.count[len] } // put symbols in table sorted by length, by symbol order within each length for (symbol = 0; symbol < n; symbol++) { if (length[symbol] != 0) { h.symbol[offs[length[symbol]]++] = (short)symbol; } } // return zero for complete set, positive for incomplete set return left; } private static bool virgin = true; // build tables once private static short[] litcnt = new short[MAXBITS + 1], litsym = new short[256]; // litcode memory private static short[] lencnt = new short[MAXBITS + 1], lensym = new short[16]; // lencode memory private static short[] distcnt = new short[MAXBITS + 1], distsym = new short[64]; // distcode memory /// /// Literal code /// private static ExplodeHuffman litcode = new ExplodeHuffman() { count = new Ptr(litcnt), symbol = new Ptr(litsym) }; /// /// Length code /// private static ExplodeHuffman lencode = new ExplodeHuffman() { count = new Ptr(lencnt), symbol = new Ptr(lensym) }; /// /// Distance code /// private static ExplodeHuffman distcode = new ExplodeHuffman() { count = new Ptr(distcnt), symbol = new Ptr(distsym) }; // bit lengths of literal codes private static readonly byte[] litlen = new byte[] { 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8, 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5, 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12, 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27, 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45, 44, 173 }; /// /// Bit lengths of length codes 0..15 /// private static readonly byte[] lenlen = new byte[] { 2, 35, 36, 53, 38, 23 }; /// /// Bit lengths of distance codes 0..63 /// private static readonly byte[] distlen = new byte[] { 2, 20, 53, 230, 247, 151, 248 }; /// /// Base for length codes /// private static readonly short[] _base = new short[] { 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264 }; /// /// Extra bits for length codes /// private static readonly byte[] extra = new byte[] { 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8 }; /* * Format notes: * * - First byte is 0 if literals are uncoded or 1 if they are coded. Second * byte is 4, 5, or 6 for the number of extra bits in the distance code. * This is the base-2 logarithm of the dictionary size minus six. * * - Compressed data is a combination of literals and length/distance pairs * terminated by an end code. Literals are either Huffman coded or * uncoded bytes. A length/distance pair is a coded length followed by a * coded distance to represent a string that occurs earlier in the * uncompressed data that occurs again at the current location. * * - A bit preceding a literal or length/distance pair indicates which comes * next, 0 for literals, 1 for length/distance. * * - If literals are uncoded, then the next eight bits are the literal, in the * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly, * no bit reversal is needed for either the length extra bits or the distance * extra bits. * * - Literal bytes are simply written to the output. A length/distance pair is * an instruction to copy previously uncompressed bytes to the output. The * copy is from distance bytes back in the output stream, copying for length * bytes. * * - Distances pointing before the beginning of the output data are not * permitted. * * - Overlapped copies, where the length is greater than the distance, are * allowed and common. For example, a distance of one and a length of 518 * simply copies the last byte 518 times. A distance of four and a length of * twelve copies the last four bytes three times. A simple forward copy * ignoring whether the length is greater than the distance or not implements * this correctly. */ private static object virginity = new object(); /// /// Decode PKWare Compression Library stream. /// /// /// private static int decomp(ref ExplodeState s) { int lit; /* true if literals are coded */ int dict; /* log2(dictionary size) - 6 */ int symbol; /* decoded symbol, extra bits for distance */ int len; /* length for copy */ int dist; /* distance for copy */ int copy; /* copy counter */ Ptr from, to; /* copy pointers */ // set up decoding tables (once--might not be thread-safe) lock (virginity) { if (virgin) { construct(ref litcode, litlen); construct(ref lencode, lenlen); construct(ref distcode, distlen); virgin = false; } } // read header lit = bits(s, 8); if (lit > 1) return -1; dict = bits(s, 8); if (dict < 4 || dict > 6) return -2; // decode literals and length/distance pairs do { if (bits(s, 1) != 0) { // get length symbol = decode(s, ref lencode); len = _base[symbol] + bits(s, extra[symbol]); if (len == 519) break; // end code // get distance symbol = len == 2 ? 2 : dict; dist = decode(s, ref distcode) << symbol; dist += bits(s, symbol); dist++; if (s.first != 0 && dist > s.next) { throw new ArgumentOutOfRangeException("distance too far back"); } // copy length bytes from distance bytes back do { to = s.outdata + s.next; from = to - dist; copy = -1; if (s.next < dist) { from += copy; copy = dist; } copy -= s.next; if (copy > len) copy = len; len -= copy; s.next += copy; do { to.SetValueThenIncrement(from.GetValueThenIncrement()); } while (--copy != 0); if (s.next == -1) { s.outputStream.Write(s.outdata.ToArray()); s.next = 0; s.first = 0; } } while (len != 0); } else { // get literal and write it symbol = (lit != 0) ? decode(s, ref litcode) : bits(s, 8); s.outdata.SetValueThenIncrement((byte)symbol); if (s.next == -1) { s.outputStream.Write(s.outdata.ToArray()); s.next = 0; s.first = 0; } } } while (true); return 0; } void blast(System.IO.Stream inputStream, System.IO.Stream outputStream, Ptr outdata, int outsz) { ExplodeState s = new ExplodeState(); // input/output state // initialize input state s.inputStream = inputStream; s.left = 0; s.bitbuf = 0; s.bitcnt = 0; s.indata = new Ptr(new byte[0]); // initialize output state s.outputStream = outputStream; s.next = 0; s.first = 1; s.outdata = new Ptr(new byte[0]); // decompress decomp(ref s); // write any leftover output if (s.outdata.Size > 0) s.outputStream.Write(s.outdata.ToArray()); } } }